

Tetrahedron Letters 41 (2000) 621-624

TETRAHEDRON LETTERS

## Stereoselective synthesis of the C18-C28 fragment of apoptolidin

Julia Schuppan, Burkhard Ziemer and Ulrich Koert\*

Institut für Chemie, Humboldt Universität zu Berlin, Hessische Straße 1-2, D-10115 Berlin, Germany

Received 22 October 1999; accepted 11 November 1999

## Abstract

An efficient, stereocontrolled synthesis of the C18–C28 segment of apoptolidin has been achieved. Key steps are a stannous triflate-mediated aldol reaction, the acylation of a Weinreb amide with an E-alkenyl lithium reagent and the dihydroxylation of a C19–C20 double bond. © 2000 Elsevier Science Ltd. All rights reserved.

Specific apoptosis inducers for tumor cells may be useful for treating certain types of cancer. Apoptolidin, a natural product isolated from *Nocardiopsis* sp., induces apoptotic cell death in rat glia cells transformed with the E1A oncogene (IC<sub>50</sub> 11 ng/ml).<sup>1</sup> The relative and absolute configuration of apoptolidin was established by combined spectroscopic methods.<sup>2</sup> Apoptolidin is a 20-membered macrolide with a side chain at C19 containing a THP-actetal unit. A D-oleandrose-L-olivomycose disaccharide is located at C27, while a novel sugar, 6-deoxy-4-*O*-methyl-L-glucose is attached at C9.



As part of a project directed towards the total synthesis of apoptolidin we report here on the stereoselective synthesis of the C18–C28 fragment **1**.

<sup>\*</sup> Corresponding author.

<sup>0040-4039/00/\$ -</sup> see front matter © 2000 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(99)02134-6



Starting point for the synthesis of **1** was the  $\beta$ -ketoester **2**. A Ru-BINAP catalyzed hydrogenation<sup>3</sup> of **2** gave the  $\beta$ -hydroxyester **3** (97% ee determined by HPLC) (Scheme 1). The latter was TBDMS-protected and subsequently reduced to the aldehyde **4**. A stereocontrolled stannous triflate-mediated aldol reaction<sup>4</sup> of the aldehyde **4** with the  $\beta$ -keto imide dipropionyl building block **5**<sup>5</sup> provided the aldol product **6** in 97% yield with a 96:4 ratio of diastereomers. The stereochemical assignment of the two new stereocenters was later confirmed by X-ray structure analysis (vide infra). An *anti*-selective reduction<sup>6</sup> of the 1,3-hydroxyketone functionality in **6** with Me<sub>4</sub>NBH(OAc)<sub>3</sub> gave the 1,3-diol **7** in 74% yield (stereoselectivity >95:5). A hydroxyl directed Weinreb transamidation provided the corresponding Weinreb amide<sup>4,7</sup> in 81% yield, which was double TMS-protected to yield the silylether **8**. As a truncated

model for the apoptolidin skeleton a three-carbon organolithium reagent was generated from E-1-bromopropene and allowed to react with the Weinreb amide **8** to give the propenyl ketone **9** in 87% yield.

The final synthetic sequence focused on the introduction of the vicinal diol at C19/20 and the ring closure to the pyranoide ketal. When the  $\alpha$ , $\beta$ -unsaturated ketone **9** was subjected to an asymmetric Sharpless dihydroxylation<sup>8</sup> with AD-mix  $\alpha$ , a 3:1 mixture of the two diastereomeric diols was isolated in 98% yield (Scheme 2). Compound **10** was formed as the major isomer. Treatment of **10** with PPTS in MeOH/CH<sub>2</sub>Cl<sub>2</sub> cleaved the TMS ethers and induced the ketal formation leading to the target compound **1**.<sup>9</sup> The separation of the two dihydroxylation stereoisomers was possible by chromatography at this stage. The diol **1** was converted into the acetonide **12**. An X-ray crystal structure analysis of **12** unambiguously proved the stereochemical assignment of the dihydroxylation reaction as well as the outcome of the previous steps.<sup>10</sup> In order to investigate the effect of substrate control versus ligand control in the dihydroxylation step the reaction of **9** with AD-mix  $\beta$  was carried out. Again, compound **10** was isolated as the main diastereomer. This indicates that in this case substrate control beats ligand control. Conducting the dihydroxylation with the cyclized precursor **11** did not increase the selectivity. In summary, a highly efficient, stereocontrolled route to the C18–C29 fragment of apoptolidin was developed including full stereochemical proof.



Scheme 2.

## Acknowledgements

This work was supported by the Fonds der Chemischen Industrie and the Schering AG. We gratefully acknowledge stimulating discussions with Prof. Dr. U. Eder.

## References

- 1. Kim, J. W.; Adachi, H.; Shin-ya, K.; Hayakawa, Y.; Seto, H. J. Antibiot. 1997, 50, 628-630.
- 2. Hayakawa, Y.; Kim, J. W.; Adachi, H.; Shin-ya, K.; Fujita, K.; Seto, H. J. Am. Chem. Soc. 1998, 120, 3524-3525.
- 3. Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1992, 71, 1-13.
- Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, 112, 866-868; Evans, D. A.; Kim, A. S.; Metternich, R.; Novack, V. J. J. Am. Chem. Soc. 1998, 120, 5921-5942.
- 5. Evans, D. A.; Ng, H. P.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992, 48, 2127-2142.
- Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560-3578; Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112, 6447-6449.
- Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 4171-4174; Levin, J. L.; Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12, 989-993.
- Johnson, R. A.; Sharpless, K. B. In *Catalytic Asymmetric Synthesis*; I. Ojima, Ed.; VCH, Weinheim: New York, 1993; pp. 227-272.
- Spectroscopic data for 1: [α]<sub>D</sub>=+40; *c* 0.06, CHCl<sub>3</sub>; IR (film): 3443, 2929, 1460, 1252, 1112, 836, 777 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): 0.04 (2 s, 6H, Si-CH<sub>3</sub>), 0.84–0.88 (m, 12H, CH<sub>3</sub>-24, Si-C(CH<sub>3</sub>)<sub>3</sub>), 1.06 (d, *J*=6.6 Hz, 3H, CH<sub>3</sub>-22), 1.25 (d, *J*=6.6 Hz, 3H, H-18), 1.50 (ddd, *J*=14.4/7.4/3.9 Hz, 1H, H-26), 1.73 (ddd, *J*=14.4/8.2/4.2 Hz, 1H, H-26), 1.79–1.86 (m, 1H, H-24), 2.08 (dq, *J*=10.9/6.6 Hz, 1H, H-22), 3.26 (s, 3H, CH<sub>3</sub>O-21), 3.25-3.32 (m, 2H, H-28), 3.31 (s, 3H, CH<sub>3</sub>O-28), 3.41–3.44 (m, 1H, H-20), 3.76 (dd, *J*=10.9/4.7 Hz, 1H, H-23), 3.85–3.92 (m, 2H, H-25, H-27), 4.05 (dq, *J*=6.4/2.4 Hz, 1H, H-19); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): -4.7, -3.9 (Si-CH<sub>3</sub>), 5.0 (22-CH<sub>3</sub>), 11.4 (24-CH<sub>3</sub>), 18.2 (C<sub>q</sub>, Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.0 (C-18), 25.9 (CH<sub>3</sub>, Si-C(CH<sub>3</sub>)<sub>3</sub>), 35.9 (C-22), 38.5 (C-26), 38.6 (C-24), 48.7 (21-OCH<sub>3</sub>), 58.9 (28-OCH<sub>3</sub>), 66.6 (C-19), 69.4, 69.6 (C-25, C-27), 72.6 (C-23), 75.3 (C-20), 77.2 (C-28), 102.6 (C-21); HRMS (EI) calcd: 361.2410 (M<sup>+</sup>-C<sub>3</sub>H<sub>7</sub>O<sub>2</sub>); found: 361.2413.
- 10. Crystal data for **12**: Monoclinic, P2<sub>1</sub>, a=8.416(2) Å, b=15.727(5) Å, c=11.472(3) Å,  $\beta=108.89(3)^\circ$ , V=1436.8(7) Å<sup>3</sup>, Z=2. 4867 independent reflections were collected in the range of  $2.28^\circ < 2\theta < 25.00^\circ$ , being used for the structural refinement by full-matrix least-squares on  $F^2$  using the SHELXL 98 package to a final R=0.0816,  $wR^2=0.1758$  and abs. struc. param. -0.4(5). The data has been deposited at the Cambridge Crystallographic Data Centre (CCDC 136117), 12 Union Road, Cambridge CB2 1EZ, UK.